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First Passage |0|



First-Passage Processes
. —

o o

Process by which a fluctuating quantity reaches a threshold for
the first time.

First-passage probability: for the random variable to
reach the threshold as a function of time.

Total probability: that threshold is ever reached. May or
may not equal 1.

First-passage time: the mean duration of the first-passage
process. Can be finite or infinite.

S. Redner, A Guide to First-Passage Processes, 200 |



Relevance

® Economics: stock orders, signaling bear/bull markets
® Politics: redistricting

® Geophysics: earthquakes, avalanches

® Biological Physics: transport in channels, translocation

® Polymer Physics: dynamics of knots

® Population dynamics: epidemic outbreaks

Connections
® Electrostatics ® Quantum Mechanics
® Heat conduction e Diffusion-limited aggregation

® Probability theory



Gambler Ruin Problem

/2 1/2
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0 | nl—l 7|1 n—lkl | | | N
You versus casino. Fair coin.Your wealth = n, Casino = N-n

Game ends with ruin.What is your winning probability I ?

Winning probability satisfies discrete Laplace equation

En—l + En—l—l

2
Boundary conditions are crucial

Eo =0 and By =1

E, =

Winning probability is proportional to your wealth

n
E, = — Feller 1968

N
First-passage probability satisfies a simple equation



First-Passage Time

/2 1/2
VRN
| | |

0 -1 n on+l N
Average duration of game is T,

Duration satisfies discrete Poisson equation

1, _ 1.,
T, =1 ntl g
2 2

Boundary conditions: Ty =Txn =0

Duration is quadratic

T, =n(N —n)
Small wealth = short game, big wealth = long game
T, ~ <(N "= O(l) DV*(TyEy) = —Ey
; N? n=0O(N) DVXT_-E_)=—E-

\

First-passage time satisfies a simple equation



Brute Force Approach

® Start with time-dependent diffusion equation

oF éf’t) — DV2P(x,1)

® |mpose absorbing boundary conditions & initial conditions

P(x,t)‘wzo = P(:L’,t)‘x_N =0 and P(x,t=0)=4d(x—n)
® Obtain full time-dependent solution
2 [ [ > 2
P(x,t) = I 2 sin %ﬂj sin %ne_(lw) Dt/N

® |ntegrate flux to calculate winning probability and duration

E, = —/ at p 2P0
0

T
— B, =
r=N N

0x

Lesson: focus on quantity of interest



Knots inVibrated Granular Polymers

® Represent knot by three random walks (with exclusion)

® Solve gambler ruin problem in three dimensions

1

0.8 r —— Experiment

0 N 1 N 1 N [ ———

0 1 2 3 4

Toxp = 0.62 £ 0.01
Otheory = 0.63047




Part |l
Ordering of Diffusing Particles



The capture problem

System: N independent diffusing particles in one dimension

What is the probability that original leader maintains the lead!?

X

N Diffusing particles

agpi (xv t) 2
— D ’l ]

Initial conditions
rn(0) <axny-1(0) < -+ <2x2(0) < 21(0)

Survival probability S(¢)=probability “lamb” survives “lions’ until ¢

Independent of initial conditions, power-law asymptotic behavior

S(t) ~tF as t — 00 Lebowitz 82
Fisher 84
Monte Carlo: nontrivial exponents that depend on N Bramson 91
Redner 96
N 2 3 4 0 0 10 benAvraham 02

B(N) | 1/2 | 3/4 | 0913 | 1.032 | 1.11 | 1.37 Grassberger 03

No theoretical computation of exponents



Two Particles

We need the probability that two particles do not meet

Map two one-dimensional walks onto one two-dimensional walk

Space is divided into allowed and forbidden regions

Boundary separating the two regions is absorbing

Coordinate x1 — o performs one-dimensional random walk

Survival probability decays as power-law To Ty = T
Si(t) ~t~1/2 ¢

In general, map N one-dimensional walk o
onto one walk in N dimension with
complex boundary conditions C

X

\_




Order Statistics

Generalize the capture problem: S, (¢) is the probability that
the leader does not fall below rank m until time #  Lindenberg 01

S1(t) is the probability that leader maintains the lead

Sn_1(t) is the probability that leader never becomes laggard

X

Power-law asymptotic behavior is generic

S (£) ~ 7m0

41

Spectrum of first-passage exponents t

Bi(N) > Ba(N) > -+ > Bn_1(V)

44
Can’t solve the problem? Make it blgger’



Three Particles

Diffusion in three dimensions; now, allowed regions are wedges

m =2 m =1 m =1 m = 2

312 | 132 2o = 23
m—3 321 123 m — 1 g

231 | 213 Tl = T2

m =3 m = 2

r1 = I3 04:7'('/3 04227'('/3
Survival probability in wedge with openingangle 0 < o < 7
—7 /(4 Spitzer 58
S(t) ~ 1 /( ) Fl?s‘;wer 84

Survival probabilities decay as power-law with time
Si~t3* and Sy~ t73/8
Indeed, a family of nontrivial first-passage exponents
S,y ~ tPm with B1> P2 > > Bn-1

Large spectrum of first-passage exponents



First Passage in a Wedge

Survival probability obeys the diffusion equation
0S(r,0,t)
ot

Focus on long-time limit
S(r,0,t) ~ &(r,0)tF
Amplitude obeys Laplace’s equation
VZ®(r,0) =0
Use dimensional analysis

O(r,0) ~ (r/D)’p(0) = g + (28)* = 0
Enforce boundary condition S|p—, = Plg—0 = ¥]p=q

= DV~S(r,0,t)

Lowest eigenvalue is the relevant one
-

Yo (0) = cos(280) — B = o



Monte Carlo Simulations

3 particles

confirm wedge theory results

4 particles

B; = 0.913
By = 0.556
Bs = 0.306

as expected, there are
3 nontrivial exponents



Kinetics of First Passage in a Cone

Repeat wedge calculation step by step
S(r,0,t) ~ (0)(Dt/r?)~"

Angular function obeys Poisson-like equation

L d [, g ady

o2 ag |S0" g

2828 +d—2)y =0

N _(.9)

deBlassie 88

Solution in terms of associated Legendre functions

a(0) = (sin (9)_5P255+5(cos #) d odd,
(sin «9)_5Qgﬁ+5(cos ¢) d even

Enforce boundary condition, choose lowest eigenvalue

PQ(SB_H;(COS a) =10 d odd,

Qgg+5(COS a) =0 d even.

d—3

2

Exponent is nontrivial root of Legendre function



Additional Results

Explicit results in 2d and 4d

T T —
Ba(ar) = Aoy and  B4(a) = 2y
Root of ordinary Legendre function in 3d
Psz(cosa) =0 .Y

Flat cone is equivalent to one-dimension
Bala=m/2) =1/2

First-passage time obeys Poisson’s equation

DV?T(r,0) = —1

First-passage time (when finite)

T(r.0) = r? cos? 0 — cos? o

2D dcos?a—1 a < cos™ (1/Vd)




Righ Dimensions

6 ———————————————————r b———T——T—T T T T T T T
i — d=2 [ — d=10
S5t = 5F — d=100
R L — D,(»)=0
u — d=8 u
4_ — d=1 4.
S B 3r
2F o)"
1F 1F
0] 05 0 05 1 05132 10 1 2 3 45
cos @ N"%cos a
® Exponent varies sharply for opening angles near /o
-
® Universal behavior in high dimensions
Ba(a) = B(V N cos a)
® Scaling function is smallest root of parabolic cylinder function
Dog(y) =0

Exponent is function of one scaling variable, not two



Asymptotic Analysis

Limiting behavior of scaling function

(\/y2/87r exp(—y2/2) Yy — —00,
\y2/8 Yy — 00.

B(y) = 1

Thin cones: exponent diverges
Bq(a) ~ Bga~t with J5(2Bg) =0
Wide cones: exponent vanishes when ¢ > 3

5d(04) ~ Ad (7‘(’ — CM)d_B With Ad — %B (%, %)

A needle is reached with certainty only when d < 3
Large dimensions

4L 1) a<7/2

S1n «

d
4
\C(sina)d a > m/2.

Bd(oz) ~ <




Diffusion in High Dimensions

312 | 132z = x4
In general, map N one-dimensional

wallk onto one walk in NV dimension
with complex boundary conditions

321 123

231 | 213 T1 = T2

1 — I3

There are (g) _ N(NQ_ ) planes of the type z; = z;

These planes divide space into N! “chambers”

Particle order is unique to each chamber

The absorbing boundary encloses multiple chambers
We do not know the shape of the allowed region
However, we do know the volume of the allowed region

Equilibrium distribution of particle order
m

Vm:N



Equilibrium versus Nonequilibrium
P=1/6 P=1/6

P=1/

P=1/6

e Diffusion is an ergodic process
® Wit long enough and initial order is completely forgotten

® Equilibrium distribution: each chamber has weight P = 1/N!

First passage as a nonequilibrium process



Cone Approximation

Fractional volume of allowed region given by equilibrium
distribution of particle order Q§
m
Vin (V) = N
Replace allowed region with cone of same fractional volume
V(a) = Jo df (sing)" 2 dQ o< sin? "2 6 d6
foﬁ db (Sin@)N_3 d= N — 1

Use analytically known exponent for first passage in cone

254~ (cOsa) =0 N odd, . N — 4
Pz, (cosa) =0 N even. 2
Good approximation for four particles
m 1 2 3
% 1/4 1/2 3/4

pgeone 110.888644 | 1/2 | 0.300754
Bm 0.913 0.506 0.306




Small Number of Particles

® By construction, cone approximation is exact for N=3

® Cone approximation gives a formal lower bound  Rayleigh 1877
Faber-Krahn theorem

Excellent, consistent approximation!



Very Large Number of Particles (N — o)

® FEquilibrium distribution is simple
m
Vm — N
® Volume of cone is also given by error function

1 1 —Y .
V(ia,N) — 5 + 5 erf <\ﬁ> with y = (cosa)VN

® First-passage exponent has the scaling form
Bm(N) — B(x) with z=m/N
® Scaling function is root of equation involving parabolic cylinder function

Dsg (\@erfc_l(Qx)) =0

Scaling law for scaling exponents!



Simulation Results

2 i ! ' J ' J ' J
— DZB(ZI/ “erfc” (2x)) =0
1.5F ° N=103 -
" N=10"
Bt -
0.5F -
O L | L | L | L |
0 0.2 04 0.6 0.8

x=m/N
Numerical simulation of diffusion in 10,000 dimensions!
Only 10 measurements confirm scaling function!

Cone approximation is asymptotically exact!



Approach to Scaling

=10

® .N_A

1L *—*N=1
p — N=1

(2” “erfc” (2x)) =0

1
2
3
4

0
0
0

0.5)
o102 ~04 06 08 1
x=m/N

Scaling function converges quickly

Is spherical one as a limiting shape!



The Capture Problem Revisited |

N | geome B N 8% [ By-s
3 | 3/4 3/4 2 | 1/2 1/2
4 | 0.888644 | 0.91 3 |3/8 3/8
= | 0.0%6604 | 1.0 4 | 0.300754 | 0.306
- 5 1 0.253371 | 0.265
0 ;“062297 1':‘1 6 | 0.220490 | 0.234
Cop L2362 L9 g 196216 | 0.212
8 | 1.175189 | 1.27 8 | 0.177469 | 0.190
9 | 1.219569 | 1.33 9 | 0.162496 | 0.178
10 | 1.258510 | 1.37 10 | 0.150221 | 0.165

Decent approximation for the exponents
even for small number of particles



The Capture Problem Revisited |l

® Extremal behavior of first-passage exponents

In - r — 0

1
~ 4 2x
5(37){ 1 —2)lnggly 21

® Probability leader never loses the lead (capture problem)

1
/61 ~ ZlﬂN

® Probability leader never becomes last (laggard problem)

1
5]\[_1 ~ NIDN

® Both agree with previous heuristic arguments Krapivsky 02

Extremal exponents can not be measured directly
Indirect measurement via exact scaling function



Summary

First-passage kinetics are rich

Family of first-passage exponents

Cone approximation gives good estimates for exponents
Exponents follow a scaling behavior in high dimensions
Cone approximation yields the exact scaling function

Combine equilibrium distribution and geometry to obtain
exact or approximate nonequilibrium behavior, namely,
first-passage kinetics



Part lll:
Mixing of Diffusing Particles



Diffusion in One Dimension

® Mixing: well-studied in fluids, granular media, not in diffusion

e System: N independent random walks in one dimension

Strong Mixing Poor Mixing
r x

trajectories cross many times  trajectories rarely cross

How to quantify mixing of diffusing particles?



The Inversion Number

Measures how ‘“scrambled” a list of numbers is

Used for ranking, sorting, recommending (books, songs, movies)

= | rank: 1234, you rank 3142

- There are three inversions: {l,3}, {2,3}, {2,4}
Definition: The inversion number m equals the number of
pairs that are inverted = out of sort

Bounds:
N(N —1)

0<m<
> M > 9

McMahon 1913



Random Walks and Inversion Number

Initial conditions: particles are ordered Space-time representation

r1(0) < 22(0) < --- <xny-1(0) < 2n(0) .
1 2 3 4 (O):O

Each particle is an independent random walk

(2 —1 with probability 1/2

m
+
+
T —> < . . +
x+ 1 with probability 1 /2 z J
4]
=
3 2 1 4 m

Inversion number

mt) =SS O(wi(t) — (1)) =3

i=1 j=i+1

Trajectory crossing = “collision”

Strong mixing: large inversion number Collision have + or - “charge”

Weak mixing: small inversion number persists Inversion number = sum of charges

Inversion number is a natural measure of mixing



Equilibrium Distribution

Diffusion is ergodic, order is completely random when t — oo
Every permutation occurs with the same weight 1/N'!

Probability P,,(N) of inversion number m for N particles

(1) N =1,
1@ N =2,
(P()Pl 7777 PM)_N'X<(]_’2’2’1) N:37
((1,3,5,6,5,3,1) N =4.
Recursion equation .
N
Pn(N)=—=Y P, (N-1
(N) =+ L )

Generating Function

M 1 N
Y Pu(N)s™=—[](1+s+s+-- 45"
m=0 Knuth 1998



Equilibrium Properties

Average inversion number scales quadratically with N

m) = A= D

Variance scales cubically with N
., N(N —1)(2N +5)

o =

72
Asymptotic distribution is Gaussian
L  (m—(m))*
P, (N) ~
() V27102 P ) 207

Large fluctuations

m — N?/4 ~ N3/?

Feller 1968



Transient Behavior

< > <€ > < > € >

4 4 4 4
Assume particles well mixed on a growing length scale

Use equilibrium result for the sub-system (m)/N ~ /
Length scale must be diffusive £ ~ /t

(m(t)) ~ NVt when t < N?
Equilibrium behavior reached after a transient regime

Nonequilibrium distribution is Gaussian as well

10 g T 0.5 1 1 1 1 1 1 1
i i — Gaussian
j 0.4 o t=10° .
St i ' Y 9 =10°
10 ; 03 “0 © t=104
| Py
2 0.2
10 F 12 E |
; — <m(t)>/[N(N-1)/4] 1 0.1
3 ! | R | R | T | | R | ! |
1 0 St

10° 10" 10” 10° 194 10° 10° 10" 10°



First-Passage Kinetics

® Survival probability S,,, () that inversion number < m until time ¢

|. Probability there are no crossing
Fisher 1984 Sl (t) ~ t_N(N_l)/4

2. Two-particles: coordinate x; — x2 performs a random walk
Si(t) ~ =12

* Map N /-dimensional walks to / walk in N dimensions

: : : L2
- Allowed region: inversion number < m

- Forbidden region: inversion number > m %

@

* Boundary is absorbing if 1
v
Q

Problem reduces to diffusion in
N dimensions in presence of complex absorbing boundary




Three Particles

Diffusion in three dimensions; Allowed regions are wedges
m =2 m =1 m = 1
312 | 132z = a5

_9 —3
=3 321 193 1 =0 <§f§: 2;; :jf%gg@

231 | 213 L1 = T2
m = 2 m=1 V=1/6 V=1/2 V =5/6
1 — I3

Survival probability in wedge with “fractional volume” 0 <V <1
S(t) ~ = 1/4V)
Survival probabilities decay as power-law with time
S, ~t73/2. Sy~ t1/2 S~ ¢3/10
In general, a series of nontrivial first-passage exponents

S~ t P with By > B2 > > Byn—1)/2

Huge spectrum of first-passage exponents



Cone Approximation

Fractional volume of allowed region given by equilibrium
distribution of inversion number

V() = 3 B(V) o

Replace allowed region with cone of same fractional volume
[y dO (sing)N 3
[ dO (sin )N -3

V(a)

Use analytically known exponent for first-passage in cone

254~ (cOsa) =0 N odd, . N — 4
Pjg, (cosa) =0 N even. 2

Good approximation for four particles

m 1 2 3 1 5 6
1 1 3 5 5] 23
Vin 21 g 8 8 G 21

am | 041113 | 0.84106 | 1.31811 | 1.82347 | 2.30052 | 2.73045
pgeone | 2.67100 | 1.17208 | 0.64975 | 0.39047 | 0.24517 | 0.14988
Bm 3 1.39 0.839 0.455 0.275 0.160

o

8

oo

t



Small Number of Particles

® By construction, cone approximation is exact for N=3

® Cone approximation produces close estimates for first-passage
exponents when the number of particles is small

® Cone approximation gives a formal lower bound

0237579 1015 W3 %69 12151801
m m




Very Large Number of Particles (N — o)

® Gaussian equilibrium distribution implies

11 _
vm(N)—>—+—erf(i> with o= T\

2 2 V2 o
® Volume of cone is also given by error function
11 —~
V(ia,N) — 5 + 5 erf (%) with y = (cos oz)\/N

® First-passage exponent has the scaling form

B (N) — B(z) with 2z = m — (m)

o
® Scaling function is root of equation involving parabolic cylinder function

DQB(_Z) =0

Scaling exponents have scaling behavior!



Simulation Results

3270 1 254

Cone approximation is asymptotically exact!



Summary

Inversion number as a measure for mixing

Distribution of inversion number is Gaussian
First-passage kinetics are rich

Large spectrum of first-passage exponents

Cone approximation gives good estimates for exponents
Exponents follow a scaling behavior

Cone approximation yields the exact scaling function

Use inversion number to quantify mixing in 2 & 3 dimensions



Counter example: cone is not limiting shape



Outlook

Heterogeneous Diffusion

Fractional Diffusion Metzler ||
Accelerated Monte Carlo methods  Livermore Group (Donev) 09
Scaling occurs in general

Cone approach is not always asymptotically exact
Geometric proof for exactness

Limiting shapes in general
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